Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares On-line
 Softwares Matemáticos

 Shopping Matemático
 Videoaulas em DVD
 Softwares em CD
 Pacotes Promocionais
 Só Vestibular

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Simulador da Mega-Sena
 Simulador da Lotofácil
 Piadas e Charges
 Charadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Matemática para o Enem
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Funções Logarítmica e Exponencial
   

  • DERIVADAS DE POTÊNCIAS RACIONAIS DE X

A partir da equação que segue, mostramos que a fórmula 

é válida para todos os valores inteiros de n e para n. Usaremos agora a diferenciação implícita para mostrar que esta fórmula é válida para qualquer expoente racional. Mais precisamente, mostraremos que se r for um número racional, então

sempre que  e   estiverem definidas. Por ora, admitiremos, sem prova que  é diferenciável.

Seja y . Uma vez que r é um número racional, pode ser expresso como uma razão de inteiros r = m/n. Assim, y= pode ser escrito como

                

Diferenciando implicitamente em relação a x e usando , obtemos 

Desta forma,   pode ser escrito como

 

Exemplo

A partir de   

Se u for uma função diferenciável de x e r for um número racional, então a regra da cadeia dá lugar à seguinte generalização de   

 

        

<< Voltar para Ensino Superior

 

Curta nossa página nas redes sociais!

 

Mais produtos

 

Sobre nós | Política de privacidade | Contrato do Usuário
Anuncie | Investidores | Sala de imprensa | Sugestões | Fale conosco

Copyright © 1998 - 2017 Só Matemática. Todos os direitos reservados. Desenvolvido por Virtuous.