📄 Números primos
📄 Decomposição em fatores primos
📄 Determinação dos divisores de um número
📄 Máximo divisor comum (M.D.C.)
📄 Mínimo múltiplo comum (M.M.C.)
Mínimo múltiplo comum (M.M.C.)
Múltiplo de um número natural
Como 24 é divisível por 3, dizemos que 24 é múltiplo de 3.
24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24.
dizemos que ele é múltiplo desse outro.
Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais.
Exemplo:
os múltiplos de 7 são:
7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 ,
21 , 28 , ...
Observações importantes:
1) Um número tem
infinitos múltiplos
2) Zero é
múltiplo de qualquer número natural
O que é M.M.C.?
Dois ou mais números sempre têm múltiplos comuns a eles. Vamos achar os múltiplos comuns de 4 e 6:
Múltiplos
de 6: 0, 6, 12, 18, 24,
30,...
Múltiplos
de 4: 0, 4, 8, 12, 16, 20, 24,...
Múltiplos
comuns de 4 e 6: 0, 12,
24,...
Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.
Cálculo do M.M.C.
Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:
1º) decompomos os números em
fatores primos
2º) o m.m.c. é o produto dos fatores primos comuns e
não-comuns:
12 = 2 x 2 x 3
30 = 2 x 3
x 5
m.m.c (12,30) = 2 x 2 x 3
x 5
Escrevendo a fatoração dos números na forma de potência, temos:
12 = 22
x 3
30 = 2
x 3 x 5
m.m.c (12,30) = 22 x 3 x 5
Processo da decomposição simultânea
Neste processo, decompomos todos os números ao mesmo tempo, em um dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. A seguir vemos o cálculo do m.m.c.(15,24,60).
Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120
Propriedade do M.M.C.
Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:
m.m.c.(3,6,30) = 2 x 3 x 5 = 30
Considere os números 4 e 15, que
são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60