O ensino da matemática com significação nos anos iniciais da educação básica - parte 6
3 Um enfoque ao ensino geométrico
O homem neolítico representava elementos do seu convívio, através de desenhos, criando utensílios e instrumentos para expressar as relações vivenciadas por ele no seu dia-a-dia. Ele registrou a historia e demonstrou preocupação com, as relações espaciais. As primeiras considerações que o homem fez a respeito da Geometria são, inquestionavelmente, muito antigas. Parecem ter se originado de simples observações provenientes da capacidade humana de reconhecer configurações físicas de comparação de formas e tamanhos.
Num outro período histórico, os egípcios utilizaram processos de medição de terras com a finalidade de resolver o problema oriundo das enchentes anuais do rio Nilo que apagava as demarcações das terras ao seu redor. Essas demarcações foram determinantes para regularizar as posses e efetuar a cobrança dos impostos sobre as terras. Todos esses conhecimentos antigos foram deixados como experiência para a posteridade.
Inúmeras circunstâncias da vida, até mesmo do homem mais primitivo, o levavam a um certo montante de descobertas geométricas subconscientes. A noção de distância foi, sem dúvida, um dos primeiros conceitos geométricos a serem desenvolvidos. A necessidade de delimitar a terra levou à noção de figuras simples tais como retângulos e quadrados. Outros conceitos geométricos simples, como as noções de vertical, paralelismo e perpendicularismo, teriam sido sugeridos pela construção de muros e moradias.
O homem ao criar, construir, resolver as situações-problemas, ele toma consciência de si mesmo e de tudo que o cerca, assimila conceitos, descobre relações, formula generalidades que os leva a construir o conhecimento matemático geométrico. (LIMA e VILA, fascículo. Nº 8, 2002)
As muitas observações do cotidiano levaram o homem primitivo à concepção de curvas, superfícies e sólidos. Por exemplo, há registro de figuras desenhadas em paredes de cavernas que sugerem círculos numerosos, entre outros o contorno do sol e da lua, o arco-íris, as sementes de muitas flores e o corte transversal de um tronco de árvore.
Em outros registros aparece o desenho do lançamento de uma pedra, que arremessada descreve o trajeto de uma parábola; uma corda não esticada e pendurada pelas pontas forma uma catenária; uma corda enrolada forma um espiral; os círculos de crescimento do tronco de uma árvore, os círculos concêntricos provocados na superfície de um lago por uma pedra nele arremessada e figuras sobre certas conchas que sugerem a ideia de famílias de curvas.
Muitas frutas e seixos são esféricos e bolhas de água são hemisféricas; alguns ovos de pássaros são aproximadamente elipsóides de revolução; um anel é um toro; troncos de arvores são cilindros circulares; configurações cônicas são frequentemente encontradas na natureza. Oleiros primitivos construíam muitas superfícies e sólidos de revolução. Corpos de homens e animais, a maioria das folhas e flores e certas conchas e cristais ilustram a ideia de simetria. A ideia de volume surge imediatamente ao se considerarem recipientes para conter líquidos e outras mercadorias. Assim, podemos dizer que a geometria empregada pelo homem primitivo para fazer ornamentos decorativos e desenhos preparou o caminho para o desenvolvimento geométrico posterior.
Por volta do ano 600 a.C., os gregos começaram a introduzir a dedução geométrica, dando origem ao que hoje consideramos geometria demonstrativa. Com o passar do tempo esse olhar sobre o pensamento geométrico tornou-se o estudo axiomático-material do espaço físico idealizado: formas, tamanhos e relações de objetos físicos contidos no espaço. Para os gregos só havia um espaço físico e uma única geometria; estes eram conceitos absolutos, o espaço não era pensado como uma coleção de ponto de vista, a relação básica em geometria era a de congruência ou superposição.
Por um longo tempo a compreensão da geometria esteve intimamente ligada ao espaço físico, começando na verdade como uma acumulação gradual de noções subconscientes sobre o espaço físico e as formas contidas nesse espaço. A essa visão primitiva damos o nome de geometria subconsciente. Mais tarde, a inteligência humana evoluiu tornando-se capaz de consolidar conscientemente algumas das noções primitivas da geometria num conjunto de leis e regras um tanto geral. Os estudiosos chamam essa fase laboratorial do desenvolvimento do pensamento geométrico de geometria cientifica.
Todos esse caminhar concuminou na atual conhecimento chamada de geometria analítica que, na primeira metade do século XVII, passa a considerar o espaço como sendo como uma coleção de pontos. Com a invenção da geometria não euclidiana clássica, cerca de dois séculos mais tarde, os matemáticos aceitaram a situação de que há mais do que um espaço concebível e, portanto, mais do que um só olhar geométrico. Mas o espaço ainda era considerado como um lugar onde as figuras podiam ser comparadas entre si. A ideia central tornou-se a de um grupo de transformações congruentes do espaço em si mesmo, e a geometria passou ser considerada como estudo das propriedades das configurações de pontos que permanecem inalterados, como os espaços circundantes que estão sujeitos constantemente a transformações.
Há muitas áreas da matemática em que a introdução de um procedimento e uma terminologia geométrica simplifica na compreensão como a apresentação de um determinado conceito ou desenvolvimento. Isto está se tornando cada vez mais evidente, tanto que muitos matemáticos do século XX sentem que talvez a melhor maneira de descrever a geometria hoje não seja como um corpo de conhecimentos, algo separado e determinado, mas como um ponto de vista, uma maneia particular de observar o espaço.