📄 Zeros ou raízes
📄 Coordenadas do vértice da parábola
📄 Construção da parábola
📄 Sinal da função
Função quadrática ou função do 2º grau
Definição
Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0. Vejamos alguns exemplos de funções quadráticas:
- f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1
- f(x) = x2 -1, onde a = 1, b = 0 e c = -1
- f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
- f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0
- f(x) = -4x2, onde a = - 4, b = 0 e c = 0
Gráfico
O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a 0, é uma curva chamada parábola.
Por exemplo, vamos construir o gráfico da função y = x2 + x:
Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos.
x | y |
-3 | 6 |
-2 | 2 |
-1 | 0 |
0 | 0 |
1 | 2 |
2 | 6 |
Observação:
Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que:
-
se a > 0, a parábola tem a concavidade voltada para cima;
-
se a < 0, a parábola tem a concavidade voltada para baixo;