Matemática e Música: em busca da harmonia (parte 9)
5. A matemática na emergência do Temperamento
O Temperamento no sentido geral significa uma escala em que todos ou quase todos os intervalos apresentam-se ligeiramente imprecisos, porém não distorcidos. Acabam por valorizar determinados intervalos em detrimento de outros, no sentido de que aos primeiros correspondem mesmas relações de frequência diferentemente dos restantes.
O temperamento pitagórico se apresenta como o temperamento mais antigo utilizado no Ocidente. No Renascimento e no inicio do Barroco, prosperaram temperamentos desiguais em que se priorizavam as terças maiores naturais. Surgiam ainda outros temperamentos nesse período que se mostravam superados a medida que a musica se estendia as todas as tonalidades.
No final da Idade Média e início do Renascimento, a música enveredou por caminhos que intimavam seu desprendimento de concepções melódicas rumo à conquista de um caráter principalmente harmônico. A trajetória trilhada pela música ocidental conduzia a música à liberdade de mosulação não apenas para tonalidades próximas, mas para distintos cenários tonais, ou seja, as composições de então, intimavam a liberdade de transposição de tonalidades.
O Temperamento não ocorreu como um processo repentino, mas se desenvolveu de diversas maneiras. No início do século XVI, como as tentativas de preencher intervalos naturais de maneira relativamente simétrica sempre se defrontavam em algum momento com a coma fatal (termo utilizado para referir-se ao pequeno resto que sempre ocorrera quando se tenta ajustar intervalos puros em um número inteiro de oitavas), obtendo-se perfeição harmônica apenas em intervalos restritos, dominava-se algum tipo de temperamento parcial especialmente nos instrumentos de tecla.
As gamas de Pitágoras e Zarlino possibilitavam a construção de escalas ligeiramente assimétricas incapazes, de responder inteiramente às necessidades culturais do final do Renascimento e início do Barroco, que intimaria, do ponto de vista das dificuldades supra-referidas, o estabelecimento de um suporte libertador para a música denominado temperamento igual.
Do ponto de vista matemático, o problema consistia em encontrar um fator f correspondente ao intervalo de semitom que após a multiplicar 12 vezes uma frequência f0 correspondente a uma determinada nota, atingisse a sua oitava referente à frequência 2. Baseado na progressão geométrica – oitava = 2/1; semitom = 2 1/12 -, Euler pesquisou um sistema de afinação que permitiu aos compositores modularem para e de quaisquer dos 12 centros tonais (que correspondem às 12 notas da escala temperada – do, do# = reb, re, re# = mib, fa, fa# = solb, sol, sol# = lab, la, la# = sib, si) sem distorções geradas por intervalos correspondentes que apresentavam-se até então, assimétricos em diferentes escalas. Do ponto de vista matemático, o problema representava-se pela seguinte equação:
f0.f.f.f.f......f = f0f12 = 2.f0
Após algumas operações algébricas simples, não é difícil concluir que o valor de f deve assumir valor 2 1/12.
Portanto, as notas desta escala possuem as seguintes relações de frequência com a nota inicial:
Dó |
ré |
mi |
fá |
sol |
lá |
si |
dó |
1 |
21/16 |
21/3 |
25/12 |
27/12 |
23/4 |
211/12 |
2 |
Neste ponto, caberia ainda levantar a questão de porque escolher 12 notas entre os 300 sons diferentes dentro de uma oitava possível de discriminar pelo ouvido humano treinado. Provavelmente, a divisão procedeu-se dessa maneira por respeito a uma certa continuidade à escala grega, cujo processo de construção – percurso de quintas – apresentava-se de tal maneira que o caminho aí delineado assumia, a menos de oitavas, máxima aproximação da nota inicial após 12 ciclos, referentes as 12 notas.
Percebemos assim que se a relação de frequências é simples, então, o som do intervalo correspondente é bonito, o que sugere naturalmente a dúvida a respeito da recíproca, bem como muitas outras discussões.