📄 História da geometria
📄 História da álgebra (uma visão geral)
📄 História da matemática comercial e financeira
📄 Origem dos sinais
📄 Origem dos números irracionais
📄 Origem dos números negativos
📄 Origem das probabilidades
📄 Origem do zero
📄 Origem do conceito de derivada de uma função
📄 Origem dos sistemas lineares e determinantes
📄 Surgimento da geometria analítica
📄 A matemática oriental
📄 A matemática na antiguidade
📄 A história da matemática no egito
📄 O nascimento do cálculo
📄 História da matemática na mesopotâmia
📄 A matemática na idade moderna
📄 História da matemática desde o século ix a.c
📄 História do grau
📄 História do ábaco
📄 História da análise combinatória
📄 Origem das palavras matemáticas
Origem das probabilidades
O passo decisivo para fundamentação teórica da inferência estatística, associa-se ao desenvolvimento do cálculo das probabilidades. A origem deste costuma atribuir-se a questões postas a Pascal (1623-1662) pelo célebre cavaleiro Méré, para alguns autores um jogador inveterado, para outros um filósofo e homem de letras. Parece, no entanto, mais verosímil aceitar que as questões postas por Méré (1607-1684) eram de natureza teórica e não fruto da prática de jogos de azar. Parece, também, aceitável que não foram essas questões que deram origem ao cálculo das probabilidades. Do que não resta dúvida é de que a correspondência trocada entre Pascal e Fermat (1601-1665) - em que ambos chegam a uma solução correta do célebre problema da divisão das apostas - representou um significativo passo em frente no domínio das probabilidades.
Também há autores que sustentam que o cálculo das probabilidades teve a sua origem na Itália com Paccioli (1445-1514), Cardano (1501-1576), Tartaglia (1499-1557), Galileo (1564-1642) e outros. Se é certo que nomeadamente Cardano no seu livro Liber de Ludo Aleae, não andou longe de obter as probabilidades de alguns acontecimentos, a melhor forma de caracterizar o grupo é dizer que marca o fim da pré- história da teoria das probabilidades. Três anos depois de Pascal ter previsto que aliança do rigor geométrico com a incerteza do azar daria origem a uma nova ciência, Huyghens (1629-1645), entusiasmado pelo desejo de " dar regras a coisas que parecem escapar á razão humana" publicou "De Ratiociniis in Ludo Aleae" que é considerado como sendo o primeiro livro sobre cálculo das probabilidades e tem a particularidade notável de introduzir o conceito de esperança matemática.
Leibniz (1646-1716), como pensador ecléctico que era, não deixou de se ocupar das probabilidades. Publicou, com efeito, duas obras, uma sobre a " arte combinatória" e outra sobre as aplicações do cálculo das probabilidades às questões financeiras. Foi ainda devido ao conselho de Leibniz que Jacques Bernoulli se dedicou ao aperfeiçoamento da teoria das probabilidades. A sua obra "Ars Conjectandi", foi publicada oito anos depois da sua morte e nela o primeiro teorema limite da teoria das probabilidades é rigorosamente provado. Pode dizer-se que foi devido às contribuições de Bernoulli que o cálculo das probabilidades adquiriu o estatuto de ciência. São fundamentais para o desenvolvimento do cálculo das probabilidades as contribuições dos astrónomos, Laplace, Gauss e Quetelet.