📄 História da geometria
📄 História da álgebra (uma visão geral)
📄 História da matemática comercial e financeira
📄 Origem dos sinais
📄 Origem dos números irracionais
📄 Origem dos números negativos
📄 Origem das probabilidades
📄 Origem do zero
📄 Origem do conceito de derivada de uma função
📄 Origem dos sistemas lineares e determinantes
📄 Surgimento da geometria analítica
📄 A matemática oriental
📄 A matemática na antiguidade
📄 A história da matemática no egito
📄 O nascimento do cálculo
📄 História da matemática na mesopotâmia
📄 A matemática na idade moderna
📄 História da matemática desde o século ix a.c
📄 História do grau
📄 História do ábaco
📄 História da análise combinatória
📄 Origem das palavras matemáticas
A Matemática Oriental (parte 5)
A Índia teve muitos matemáticos que fizeram grandes contribuições. Entre eles podemos destacar:
- Aryabhata
Publicou, em 499, uma obra intitulada “Aryabhatiya”. Esta publicação é um pequeno volume sobre astronomia e matemática, semelhante aos “Elementos” de Euclides, porém de oito séculos antes. São compilações de resultados anteriores. Esta obra contém: nome das potências de dez, até a décima; regras de mensuração (muitas erradas); área do triângulo; volume da pirâmide (incorreto); área do círculo; volume da esfera (incorreto) e áreas de quadriláteros (algumas incorretas). Também encontramos cálculos com a medida do tempo e trigonometria esférica.
- Brahmagupta
Viveu na Índia central pouco mais de cem anos depois de Aryabhata. Tem pouco em comum com seu predecessor que vivia no leste da Índia. Seu trabalho mais importante foi a generalização da fórmula de Heron para achar a área de qualquer quadrilátero. Também trabalhou na solução de equações quadráticas com raízes negativas.
- Bhaskara
Considerado o mais importante matemático do século doze (1114 – 1185). Ele preencheu as lacunas do trabalho de Brahmagupta. É dele a primeira resposta plausível para a divisão por zero. Em seu trabalho “Vija-Ganita” ele afirma que tal quociente é infinito. Sua outra obra, “Lilavati”, apresenta tópicos sobre equações lineares e quadráticas, determinadas e indeterminadas, mensuração, progressões aritméticas e geométricas, radicais, tríadas pitagóricas, entre outras. Sua obra representa a culminação de contribuições hindus anteriores.
- Ramanujan
Após Bhaskara, a Índia passou vários séculos sem matemáticos de importância comparável. Srinivasa Ramanujan (1887-1920) é considerado o gênio hindu, em aritmética e álgebra, do século vinte.
A introdução de uma notação para uma posição vazia, o símbolo para o zero, foi o segundo passo para o nosso moderno sistema de numeração. Não se sabe se o número zero (diferente do símbolo para a posição vazia) surgiu junto com os nove numerais hindus. É bem possível que o zero seja originário do mundo Grego, talvez de Alexandria. Possivelmente foi transmitido à Índia depois que o sistema posicional já estava estabelecido lá. É interessante observar que os Maias do Yucatán (México), anterior à Colombo, usavam notação posicional, com notação para a “posição vazia”. Com a introdução, na notação hindu, do décimo numeral, um ovo de ganso para o zero, o nosso moderno sistema de numeração para os inteiros estava completo.
A nova numeração, geralmente chamada de hindu-arábica, é uma nova combinação dos três princípios básicos, todos de origem antiga:
i) base decimal
ii) notação posicional
iii) forma cifrada para cada um dos dez numerais
Nenhum destes de se deveu, originalmente, aos hindus, mas foi devido a eles que os três foram ligados pela primeira vez para formar o nosso sistema de numeração.
Outra contribuição importante dos hindus foi a introdução de um equivalente da função seno na trigonometria para substituir a tabela de cordas dos gregos. A trigonometria hindu era um instrumento útil e preciso para a astronomia.
- BIBLIOGRAFRIA
BARBEIRO, Heródoto. Et alli. História. Ed. Scipione. 2005
BERUTTI, Flávio. História. Ed. Saraiva. 2004.
BOYER, Carl B. História da matemática. 2º ed. SP. Edgard Blucher, 2003.
EVES, Howard. Introdução à história da matemática. 2º ed. UNICAMP, 2002.
LINTZ, Rubens G. História da matemática. FURB. 1999.
STRUIK, História concisa das matemáticas. Gradiva. 1989.