Você está em Ensino superior > Séries e Sequências ▼
📄 Sequências e Teorema do Sanduíche
📄 Séries
📄 Série Geométrica
📄 Série-P, série alternada e série de potência
📄 Teste de Leibniz
📄 Teste de D´Alembert, Convergência absoluta
📄 Resumo sobre séries
📄 Séries
📄 Série Geométrica
📄 Série-P, série alternada e série de potência
📄 Teste de Leibniz
📄 Teste de D´Alembert, Convergência absoluta
📄 Resumo sobre séries
Teste de Leibniz
Uma série alternada CONVERGE se:
* Seu termo genérico, em módulo, tende a zero.
* A série dos módulos é decrescente.
Há três maneiras diferentes de verificar se a série dos módulos é decrescente.
a) verificar se, para todo "k" inteiro positivo, .
b) verificar se, para todo "k" inteiro positivo, .
c) considerar a função f(x) = f(n) e verificar o sinal de sua derivada. Se f'(x)<0, então f é decrescente.
Como referenciar: "Séries e Sequências" em Só Matemática. Virtuous Tecnologia da Informação, 1998-2024. Consultado em 21/11/2024 às 06:24. Disponível na Internet em https://www.somatematica.com.br/superior/series/series3_2.php