📄 Plano cartesiano
📄 Distância entre dois pontos
📄 Razão de secção
📄 Ponto médio
📄 Baricentro de um triângulo
📄 Condições de alinhamento de três pontos
📄 Equação geral
📄 Equação segmentária
📄 Equações paramétricas
📄 Equação reduzida
📄 Coeficiente angular
📄 Representação gráfica de retas
📄 Posições relativas entre retas
📄 Ângulo entre duas retas
📄 Distância entre ponto e reta
📄 Bissetrizes
Geometria analítica - Retas
Introdução
Entre os pontos de uma reta e os números reais existe uma correspondência biunívoca, isto é, a cada ponto de reta corresponde um único número real e vice-versa.
Considerando uma reta horizontal x, orientada da esquerda para direita (eixo), e determinando um ponto O dessa reta (origem) e um segmento u, unitário e não-nulo, temos que dois números inteiros e consecutivos determinam sempre nesse eixo um segmento de reta de comprimento u:
Medida algébrica de um segmento
Fazendo corresponder a dois pontos, A e B, do eixo x os números reais xA e xB , temos:
A medida algébrica de um segmento orientado é o número real que corresponde à diferença entre as abscissas da extremidade e da origem desse segmento.