📄 Plano cartesiano
📄 Distância entre dois pontos
📄 Razão de secção
📄 Ponto médio
📄 Baricentro de um triângulo
📄 Condições de alinhamento de três pontos
📄 Equação geral
📄 Equação segmentária
📄 Equações paramétricas
📄 Equação reduzida
📄 Coeficiente angular
📄 Representação gráfica de retas
📄 Posições relativas entre retas
📄 Ângulo entre duas retas
📄 Distância entre ponto e reta
📄 Bissetrizes
Representação gráfica de retas
Para representar graficamente as retas de equação ax + by + c = 0 ( b0), isolamos a variável y e atribuímos valores a x, obtendo pares ordenados que são pontos da reta. Assim, é mais conveniente usar a equação na forma reduzida, já que ela apresenta o y isolado.
Coordenadas do ponto de intersecção de retas
A intersecção das retas r e s, quando existir, é o ponto P(x, y), comum a elas, que é a solução do sistema formado pelas equações das duas retas. Vamos determinar o ponto de intersecção, por exemplo, das retas r: 2x +y - 4 =0 e s: x -y +1=0. Montando o sistema e resolvendo-o, temos:
Substituindo esse valor em x -y = -1, temos:
1 - y = -1
y = 2
Logo, P(1, 2) é o ponto de intersecção das retas r e s.
Graficamente, temos: