📄 Axiomas
📄 Posições relativas de duas retas
📄 Determinação de um plano
📄 Posições relativas de reta e plano
📄 Perpendicularismo entre reta e plano
📄 Posições relativas de dois planos
📄 Projeção ortogonal
📄 Distâncias entre ponto, reta e planos
📄 Ângulos entre retas e planos
📄 Diedros, triedos, poliedros
📄 Poliedros
📄 Poliedros regulares
📄 Prismas
📄 Classificação dos prismas
📄 Secção do prisma
📄 Paralelepípedo
📄 Cubo
📄 Generalização do volume de um prisma
📄 Cilindro
📄 Secções do cilindro
📄 Área e volume do cilindro
📄 Cilindro equilátero
📄 Cone circular
📄 Área e volume do cone
📄 Pirâmide
📄 Secção paralela à base de uma pirâmide
📄 Área e volume da pirâmide
📄 Tronco de pirâmide
📄 Tronco de cone
📄 Esfera
📄 Partes da esfera
Secção e áreas do prisma
Um plano que intercepte todas as arestas de um prisma determina nele uma região chamada secção do prisma.
Secção transversal é uma região determinada pela intersecção do prisma com um plano paralelo aos planos das bases (figura 1). Todas as secções transversais são congruentes (figura 2).
Áreas
Em um prisma, distinguimos dois tipos de superfície: as faces e as bases. Assim, temos de considerar as seguintes áreas:
a) área de uma face (AF ): área de um dos paralelogramos que constituem as faces;
b) área lateral (AL): soma das áreas dos paralelogramos que formam as faces do prisma.
No prisma regular, temos:
AL = n . AF (n = número de lados do polígono da base)
c) área da base (AB): área de um dos polígonos das bases;
d) área total (AT): soma da área lateral com a área das bases.
AT = AL + 2AB
Vejamos um exemplo. Dado um prisma hexagonal regular de aresta da base a e aresta lateral h, temos: