📄 Axiomas
📄 Posições relativas de duas retas
📄 Determinação de um plano
📄 Posições relativas de reta e plano
📄 Perpendicularismo entre reta e plano
📄 Posições relativas de dois planos
📄 Projeção ortogonal
📄 Distâncias entre ponto, reta e planos
📄 Ângulos entre retas e planos
📄 Diedros, triedos, poliedros
📄 Poliedros
📄 Poliedros regulares
📄 Prismas
📄 Classificação dos prismas
📄 Secção do prisma
📄 Paralelepípedo
📄 Cubo
📄 Generalização do volume de um prisma
📄 Cilindro
📄 Secções do cilindro
📄 Área e volume do cilindro
📄 Cilindro equilátero
📄 Cone circular
📄 Área e volume do cone
📄 Pirâmide
📄 Secção paralela à base de uma pirâmide
📄 Área e volume da pirâmide
📄 Tronco de pirâmide
📄 Tronco de cone
📄 Esfera
📄 Partes da esfera
Pirâmide
Dados um polígono convexo R, contido em um plano , e um ponto V (vértice) fora de , chamamos de pirâmide o conjunto de todos os segmentos .
Elementos da pirâmide
Dada a pirâmide a seguir, temos os seguintes elementos:
-
base: o polígono convexo R.
-
arestas da base: os lados do polígono.
-
arestas laterais: os segmentos .
-
faces laterais: os triângulos VAB, VBC, VCD, VDE, VEA.
-
altura: distância h do ponto V ao plano.
Classificação
Uma pirâmide é reta quando a projeção ortogonal do vértice coincide com o centro do polígono da base. Toda pirâmide reta, cujo polígono da base é regular, recebe o nome de pirâmide regular. Ela pode ser triangular, quadrangular, pentagonal etc., conforme sua base seja, respectivamente, um triângulo, um quadrilátero, um pentágono etc. Veja:
Observações:
1ª) Toda pirâmide triangular recebe o nome do tetraedro. Quando o tetraedro possui como faces triângulos equiláteros, ele é denominado regular (todas as faces e todas as arestas são congruentes).
2ª) A reunião, base com base, de duas pirâmides regulares de bases quadradas resulta num octaedro. Quando as faces das pirâmides são triângulos equiláteros, o octaedro é regular.