📄 Axiomas
📄 Posições relativas de duas retas
📄 Determinação de um plano
📄 Posições relativas de reta e plano
📄 Perpendicularismo entre reta e plano
📄 Posições relativas de dois planos
📄 Projeção ortogonal
📄 Distâncias entre ponto, reta e planos
📄 Ângulos entre retas e planos
📄 Diedros, triedos, poliedros
📄 Poliedros
📄 Poliedros regulares
📄 Prismas
📄 Classificação dos prismas
📄 Secção do prisma
📄 Paralelepípedo
📄 Cubo
📄 Generalização do volume de um prisma
📄 Cilindro
📄 Secções do cilindro
📄 Área e volume do cilindro
📄 Cilindro equilátero
📄 Cone circular
📄 Área e volume do cone
📄 Pirâmide
📄 Secção paralela à base de uma pirâmide
📄 Área e volume da pirâmide
📄 Tronco de pirâmide
📄 Tronco de cone
📄 Esfera
📄 Partes da esfera
Poliedros
Chamamos de poliedro o sólido limitado por quatro ou mais polígonos planos, pertencentes a planos diferentes e que têm dois a dois somente uma aresta em comum. Veja alguns exemplos:
Os polígonos
são as faces do poliedro; os lados e os vértices dos polígonos são as
arestas e os vértices do poliedro.
Poliedros convexos e côncavos
Observando os poliedros acima, podemos notar que, considerando qualquer uma de suas faces, os poliedros encontram-se inteiramente no mesmo semiespaço que essa face determina. Assim, esses poliedros são denominados convexos.
Isso não acontece no último poliedro, pois, em relação a duas de suas faces,
ele não está contido apenas em um semi-espaço. Portanto, ele é denominado
côncavo.
Classificação
Os poliedros convexos possuem nomes especiais de acordo com o número de faces, como por exemplo:
-
tetraedro: quatro faces
-
pentaedro: cinco faces
-
hexaedro: seis faces
-
heptaedro: sete faces
-
octaedro: oito faces
-
icosaedro: vinte faces