📄 Definições de Estatística
📄 Coleta de dados
📄 População e amostra
📄 Amostragem
📄 Amostra não probabilística
📄 Amostra probabilística
📄 Dimensionamento da amostra
📄 Tipos de dados
📄 Tipos de variáveis escalares
📄 Distribuição de frequências
📄 Regras para a distribuição de frequências
📄 Medidas de tendência central
📄 Variabilidade
📄 Teste de hipótese
📄 Estatística não paramétrica
📄 Teste do qui quadrado
📄 Teste do qui quadrado para duas amostras
📄 Teste T para duas amostras não relacionadas
📄 Análise de variância
📄 Regressão simples (RLS)
📄 Regressão linear múltipla (RLM)
📄 Exercícios e bibliografia
Regressão linear múltipla (RLM)
Muitos problemas de regressão envolvem mais de uma variável regressora. Por exemplo: a satisfação geral poder ser composta por diversas variáveis independente tais como preço, prazo de entrega, embalagem, entre outras.
Em virtude dos princípios da regressão múltipla serem análogos à da regressão simples, não se abordarão aqui as particularidades que envolvem a equação geral da equação da Regressão Múltipla: y = β0 + βx1 + β2x2 + ...+ βkxk + Σ.
Analogamente, a preocupação geral do analista nesta análise, é o R2 que indica a variabilidade total do modelo de regressão, e os R’s que variam de 1 a –1, indicando a variabilidade total, onde haverá uma relação entre a variável de resposta e as regressoras.
O teste de hipótese baseia-se no já abordado valor do t, onde ocorre a situação do mesmo sendo calculado e maior do que o tabelado, rejeita-se a hipótese nula.
Exemplo:
Variáveis |
Coeficiente |
Prazo de entrega |
0,154 |
Envolvimento da equipe na solução de problemas |
0,135 |
Preço praticado |
-0,002 |
Trabalho de pós venda |
0,134 |
Embalagem |
0,065 |
Neste exemplo real, objetivava-se mensurar o grau de satisfação dos clientes de uma empresa distribuidora de software, onde a variável de resposta era a satisfação geral e as regressoras eram as acima citadas (para um grupo de fatores).
Observa-se que pouca representatividade é exercida por estas variáveis, afinal os coeficientes pouco se afastam de zero. No entanto o R2 é elevado (0,68), conferindo uma boa precisão no cálculo.