📄 Definições de Estatística
📄 Coleta de dados
📄 População e amostra
📄 Amostragem
📄 Amostra não probabilística
📄 Amostra probabilística
📄 Dimensionamento da amostra
📄 Tipos de dados
📄 Tipos de variáveis escalares
📄 Distribuição de frequências
📄 Regras para a distribuição de frequências
📄 Medidas de tendência central
📄 Variabilidade
📄 Teste de hipótese
📄 Estatística não paramétrica
📄 Teste do qui quadrado
📄 Teste do qui quadrado para duas amostras
📄 Teste T para duas amostras não relacionadas
📄 Análise de variância
📄 Regressão simples (RLS)
📄 Regressão linear múltipla (RLM)
📄 Exercícios e bibliografia
População e amostra
Qualquer estudo científico enfrenta o dilema de estudo da população ou da amostra. Obviamente tería-se uma precisão muito superior se fosse analisado o grupo inteiro, a população, do que uma pequena parcela representativa, denominada amostra. Observa-se que é impraticável na grande maioria dos casos, estudar-se a população em virtude de distâncias, custo, tempo, logística, entre outros motivos.
A alternativa praticada nestes casos é o trabalho com uma amostra confiável. Se a amostra é confiável e proporciona inferir sobre a população, chamamos de inferência estatística. Para que a inferência seja válida, é necessária uma boa amostragem, livre de erros, tais como falta de determinação correta da população, falta de aleatoriedade e erro no dimensionamento da amostra.
Amostras relacionadas
Quando se retira aleatoriamente dois elementos de uma mesma população e expõe-se apenas um elemento a um determinado fator (propaganda, por exemplo). Avalia-se o impacto junto aos dois elementos.
Amostras não relacionadas
Apenas um elemento é selecionado e exposto ao fator. Uma comparação é feita considerando o antes e o depois.